Abstract

Abstract Thermally coupled constitutive relations are generally used to determine material constants and elastic moduli (Young's modulus and shear modulus) of solid media. Conventional studies on this issue are mainly based on the linear temperature dependence of elastic moduli, whereas analytical difficulties are often encountered in theoretical studies on nonlinear temperature dependence, particularly at high temperatures. This study investigates the thermally coupled constitutive relations for elastic moduli and material constants using the assumption of axisymmetric fields, with applications to geologic materials (marble, limestone and granite). The Taylor power series of the Helmholtz free energy function within dimensionless temperatures could be used to develop the thermally coupled constitutive relations. The thermoelastic equivalent constitutive equations were formulated under the generalized Hooke's law. The material constants of solid rocks were determined by fitting experimental data using axisymmetric stress and strain fields at different temperatures, based on their thermomechanical properties. For these geologic materials, the resultant equivalent elastic moduli and deformations were in good agreement with those from the experimental measurements. Thermal stresses, internal moisture evaporation and internal rock compositions significantly affected the experimental results. This study provides a profound understanding of the thermally coupled constitutive relations that are associated with the thermomechanical properties of solid rocks exposed to high temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.