Abstract

Dynamic deformation behavior of a commercial Ti-6Al-4V alloy is measured between room temperature and beyond the β-transus temperature with high thermal resolution using a rapid-heating Kolsky bar technique. The high thermal resolution allows for a thorough investigation of the dynamic thermal softening behavior of this alloy including effects related to the transformation from the initial hcp α/bcc β dual phase structure to a full β structure for improved modeling of high temperature dynamic manufacturing processes such as high-speed machining. Data are obtained at an average strain rate of 1800 s−1 from room temperature to 1177 °C, with total heating times limited to 3.5 s for all tests. Short heating times prevent thermal distortion of the Kolsky bar loading waves and can allow an investigation of non-equilibrium mechanical behavior, although no such behavior was identified in this study. Between 800 °C and 1000 °C, a progressive change in the thermal softening rate was observed that corresponded well with the equilibrium phase diagram for this alloy. The dynamic thermal softening behavior in the transformation region is incorporated via a new modification of the Johnson–Cook (J–C) viscoplastic constitutive equation. Rate sensitivity is determined at room temperature by combining Kolsky bar data with quasi-static measurements at strain rates from 7.5 × 10−5 s−1 to 0.16 s−1 and the data are fit using multi-parameter optimization to arrive at a full modified J–C model for Ti-6Al-4V to nearly 1200 °C. In its generic form, the modification factor we propose, G(T), is applicable to any material system undergoing gradual phase transformation over a range of temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.