Abstract

Stimulus responsive materials can provide a variety of desirable properties in one equipment unit, such as optoelectronic devices, data communications, actuators, memories, sensors and capacitors. However, it remains a large challenge to design such stimulus responsive materials, especially functional materials having both dielectric switch and second harmonic generation (SHG). Here, a new stimuli-responsive switchable material [(CH3)3N(CH2)2Cl]2[Mn(SCN)4(H2O)2] was discovered as a potential second-harmonic generation (SHG) dielectric switch. It is worth noting that it has SHG characteristics before and after undergoing reversible high-temperature phase transitions. In this work, we successfully refined the tetramethylammonium cation to obtain a quasi-spherical cation, which is tetramethylchloroethylamine (TMCEM) cation. By substituting H with a halogen, the increased steric hindrance of the molecular makes energy barrier increased, resulting in the reversible high-temperature phase transition. At the same time, the interactions of quasi-spherical cations and [Mn(SCN)4(H2O)2]2− anions affect a non-centrosymmetric structure to induce the SHG effect. These findings provide a new approach to design novel functional switch materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.