Abstract

This research study examines the high-temperature dielectric relaxation and electric conduction mechanisms in (x)LaCoO3-(1 - x)Na0.5Bi0.5TiO3 samples, where x is 0.05, 0.10, and 0.15. The findings demonstrate that all the samples exhibit two dielectric transitions: first, a frequency-dispersive shoulder at a lower temperature (Ts) around 425-450 K, which is associated with polar nanoregions (PNRs), and second, from ferroelectric to paraelectric transition at the Curie temperature (Tc) approximately between 580 and 650 K. The impedance analysis reveals the negative temperature coefficient of resistance behavior of the specimens. The broad and asymmetric relaxation peaks obtained from modulus spectroscopy demonstrate a wide range of relaxations, suggesting non-Debye-type behavior. Furthermore, the conductivity studies provide insights into understanding the transport phenomena in the samples. The oxygen vacancies resulting from the addition of LaCoO3 into the Na0.5Bi0.5TiO3 ceramics are responsible for the relaxation and conduction processes, and the charge carrier is doubly ionized oxygen ion vacancies. All samples except for LCNBT10 at 1 kHz exhibit a negative magnetodielectric response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.