Abstract

ABSTRACTAluminide coatings prepared on Ti-6Al-4V substrate were able to improve oxidation resistance of the alloy under cyclic oxidation at 750°C both in dry and moist air conditions due to aluminide’s ability to form a stable alumina oxide scale. However, degradation of the coating due to spallation, cracking, internal oxidation and formation of voids with increased cyclic oxidation reduced the lifespan of the coating and the underneath substrate. The main cause of coating degradation for hot-dip specimens is cracks that initiated and propagated perpendicular to the surface. For the plasma spray specimens, the cracks are parallel to the surface. Initiation of cracks in hot-dip coatings are more accredited to residual stresses due to cooling and presence of brittle intermetallic phases TiAl2 and TiAl. For plasma spray coatings, initiation and propagation of cracks are attributed to presence of entrapped oxides, pores and grain boundaries of the deposited splats whose flattened edges are parallel to the surface of the coating. Presence of water vapor, too, acts as an oxygen carrier and thus promotes oxidation internally, inhibits growth of continuous protective alumina oxide scales and weakens the scale/alloy interfacial toughness. Water vapor therefore accelerates degradation by increasing spallation and cracking rate of the coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.