Abstract

The deformation characteristics of a beta-type Ti-29%Nb-13%Ta-5%Zr alloy, developed for biomedical application, and their relation with the microstructure are investigated. The cold-rolled specimen is subjected to a tensile test at high temperatures ranging from 700 to 800°C under a constant cross-head speed ranging from 1×10-4 to 1×10-2s-1. The elongations tested at different temperatures are compared with that of Ti-15%V-3%Cr-3%Sn-3%Al, a typical beta titanium alloy. The deformation mechanism is characterized from the parameter of the strain rate sensitivity. The microstructures before and after the tensile test are observed with optical microscope and the correspondent grain sizes are measured. The grain growth during the deformation is also described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.