Abstract

The application of nanocrystalline (NC) materials at high temperatures is challenging due to their poor thermal stability or low creep resistance. Here we report that a thermally stable NC Fe-5 at.% Zr steel produced by High-Pressure-Thermal-Compression sintering exhibits an excellent creep resistance (with a creep rate of 3.92 × 10−8 s−1 at 923 K and under the applied stress of 250 MPa). The excellent creep resistance is ascribed to its highly stable NC structure stabilized by nano-sized precipitates. Mechanical testing suggests that the creep of the NC Fe-5 at.% Zr steel is controlled by dislocation activities rather than diffusion dominated mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.