Abstract

Creep deformation in ultrafine-grained (0.1 to 1μm) Fe-doped magnesia polycrystals is studied in compression, at temperatures of 700 to 1050° C, and constant loads of 50 to 140 MPa. The stress exponent observed to be nearly unity and the strong grain size sensitivity (ė∼d−2.85) suggest that diffusional creep mechanisms dominate the deformation. In the grain size range of the present study the grain boundary diffusion contribution is significantly more important than lattice diffusion. Magnesium is tentatively identified as the rate-controlling species along grain boundaries from an analysis of the diffusivities inferred from the present work and from other authors for Fe-doped magnesia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.