Abstract
The creep behaviour of an FeAl intermetallic strengthened by nanosized oxide particles has been examined at temperatures of 700–825 °C. For all temperatures the strain rate shows a power law dependence on the applied stress. At the lowest temperature and with the highest stresses there is evidence of a threshold stress produced by the difficulty of overcoming the particle barriers, while for higher temperatures as well as at low stresses there is no threshold stress and creep appears to be controlled by general climb. The fine oxide particles produce good strengthening at low temperatures but are more readily overcome at high temperatures due to their very small size and limited attractive relaxation force. Despite such fall in creep strength, this material remains one of the strongest iron aluminides to the temperature range evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.