Abstract
The effects of reaction conditions on the yield of ethylene and propylene from pentene cracking were investigated in a fixed-bed reactor at 500–750 °C and for a weight hourly space velocity (WHSV) of 15–83 h−1. The total yield of ethylene and propylene reached a maximum (67.8 wt%) at 700 °C and 57 h−1. In order to explore the reaction mechanism at high temperatures, a thermal/catalytic cracking proportion model was established. It was found that the proportion of pentene feed chemically adsorbed with the acid sites and cracked through catalytic cracking was above 88.4%, even at 750 °C. Ethylene and propylene in the products were mainly derived from catalytic cracking rather than thermal cracking at 650–750 °C. In addition, the suitable reaction network for pentene catalytic cracking was deduced and estimated. The results showed that the monomolecular cracking proportion increased from 1% at 500 °C to 95% at 750 °C. The high selectivity of ethylene and propylene at high temperatures was mainly due to the intensification of the monomolecular cracking reaction. After 20 times of regeneration, the acidity and pore structure of the zeolite had hardly changed, and the conversion of pentene remained above 80% at 650 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.