Abstract
Changes in environmental regulations have led many fossil fuel-fired boiler operators to alter their combustion practices (low NO x burning), thereby lowering plant emissions. This change has led to unacceptable wastage of carbon and low alloy steel waterwall tubes and expensive shutdowns due to severe corrosion. One favored solution is to weld overlay a more corrosion resistant alloy on top of existing tubes. Two nickel-based alloys developed for such applications were tested alongside the commercially available alloy 622 in a simulated low NO x environment. Electron probe microanalysis (EPMA) examination of the weld overlays and corrosion scales demonstrated that microsegregation of molybdenum occurred in one of the candidate alloys and alloy 622. This microsegregation had a detrimental effect on the corrosion resistance of these alloys. The candidate alloy with higher chromium concentration, low nominal molybdenum concentration, and corresponding minimum molybdenum segregation, exhibited the best corrosion resistance of the examined alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.