Abstract
In this work, Ni-Cr-Mo cladding layers with different Si contents were prepared on Q235 steel using laser-cladding technology, and their corrosion characteristics were investigated in NaCl-KCl-Na2SO4-K2SO4 mixed salt at 550 °C. The corrosion resistance of each cladding layer was tested by weight loss method, and the phase compositions and microstructures of the cladding layers and corrosion products were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that Si contributed to the formation of a dense chromium oxide film on the surface, and the addition of Si can significantly improve the corrosion resistance of the cladding layer at high temperature. At 550 °C, the corrosion rate of the cladding layer with 5 wt.% Si was only 38.2% of that of the cladding layer without Si. After 168 h of high-temperature corrosion, no Cr-rich oxide scale was found in the outermost layer of the Ni-Cr-Mo cladding layer without Si. When Si content was 3 wt.% and 5 wt.%, the Cr-rich oxide scale of the cladding layer was denser than that of the coating with 1 wt.% Si content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.