Abstract

The oxidation in dry air of four cast alloys intended for exhaust gas systems has been examined. Particular interest was directed to how the oxide growth was related to the microstructures. The examined alloys were two cast ductile irons, a SiMo alloy (Fe3,86Si0,6Mo3C) and a Ni-Resist alloy (Fe32Ni5,3Si2,1C), and two cast stainless steels, one ferritic (Fe18Cr2,1Mn0,32C) and cane austenitic (Fe20Cr9Ni0,47C). Coupons were oxidised for 50 h at temperatures between 650°C and 1050°C. The samples were characterised by using XRD, SEM/EDX and AES. As expected, the overall oxide thickness increased with temperature and partial spallation occurred at the highest temperatures for all alloys. Porous Fe oxide nodules nucleate at the graphite nodules on the ductile irons. These Fe-oxide nodules formed above a continuous layer of Fe-Si-oxide for the SiMo and mixed Fe-Ni-Si oxides for the Ni-Resist. The total oxide thickness is about (60μm). Thick oxides at the interdendritic regions in the cast steels were attributed to non-Cr-carbides. Segregation of Cr directed the formation of iron oxide nodules to the centre of the dendrites in the austenitic alloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.