Abstract

Our energy demands will be increasing for the near future due to factors such as population growth, improved standards of living, increased automation, and increased mobility. New power generation systems are being designed to meet this growing demand efficiently. These designs are also being influenced by our desire to meet more of our energy needs using sustainable sources. One of the primary goals of these advanced designs is to improve operational efficiency, which is low at ∼35% for thermal power plants. A straightforward method to improve efficiency is by operating the thermal power cycles at higher temperatures of up to 1000°C. Higher temperature operations, in turn, require newer heat transfer fluids such as molten salts, molten metals, or gases. The design criteria for these newer power systems are often limited by the choice of materials that can operate under these harsh environments. All of these demands mean that corrosion scientists need to study, understand, and develop strategies to control corrosion in these newer and harsher environments. This issue of Interface aims to provide an overview of some of these corrosion issues, identify promising materials, and highlight the research needs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call