Abstract

The carburization of NiCr 32 20 and NiCrSi 60 16 has been studied in CH4-H2 mixtures in the temperature range 900–1100°C. The methods included thermogravimetric measurements and studies on reacted specimens by X-ray diffraction, metallographic, and chemical analysis. Upon carburization internal carbides M7C3 and M23C6 are formed (M=mainly Cr); the rate of carburization is determined by carbon diffusion in the Fe-Ni matrix with carbide precipitations. The effect of the alloying elements Ni and Si on the carburization resistance of austenitic alloys is explained. By the same methods the oxidation and carburization in CO-H2O-H2 mixtures have been studied. The important role of a stable chromium oxide layer for the carburization resistance was confirmed. Creep tests at 1000°C in a CO-H2O-H2 atmosphere where Cr2O3 is stable showed carburization occurring through cracks in the oxide layer. At high strain rates premature failure occurs by carburization, which is followed by internal oxidation and formation of cracks, voids, and holes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.