Abstract

Two-dimensional carbon fiber reinforced silicon carbide (2D-C/SiC) composites are well-known for the high-temperature performance in aeronautical and aerospace fields, but they are susceptible to foreign object damage in service. Therefore, the high-temperature performance of pre-impacted 2D-C/SiC is closely connected with flight security. In this study, the pre-impact testing was conducted using a stress-reversal split Hopkinson bar, and the pre-impact energies were set from 0.1J to 0.9J. Subsequently, the pre-impacted specimens were heated for a period in the temperature-keeping procedure from 20 °C to 1600 °C. Oxidation kinetics of the pre-impacted 2D-C/SiC specimens were obtained based on the weight loss-temperature trends. Finally, the specimens were compressed under high temperatures at the strain rates from 10−4/s to 1000/s, so the residual compressive strength (RCS)-temperature trends were achieved. Hence, the correlation between the weight loss and the RCS was established. Interestingly, the pre-impact strengthening effect on the compressive strength was found. The results revealed that the RCS of 2D-C/SiC is affected by various parameters, providing new sights into the high-temperature damage tolerance of ceramic matrix composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.