Abstract

The authors report the fabrication of ZnO-based metal-oxide-semiconductor field effect transistors (MOSFETs) with a high quality SiO 2 gate dielectric by photochemical vapor deposition (photo-CVD) on a sapphire substrate. Compared with ZnO-based metal-semiconductor FETs (MESFETs), it was found that the gate leakage current was decreased to more than two orders of magnitude by inserting the photo-CVD SiO 2 gate dielectric between ZnO and gate metal. Besides, it was also found that the fabricated ZnO MOSFETs can achieve normal operation of FET, even operated at 150 °C. This could be attributed to the high quality of photo-CVD SiO 2 layer. With a 2 μm gate length, the saturated I ds and maximum transconductance ( G m ) were 61.1 mA/mm and 10.2 mS/mm for ZnO-based MOSFETs measured at room temperature, while 45.7 mA/mm and 7.67 mS/mm for that measured at 150 °C, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.