Abstract
We have recently developed ceramic eutectics, which are named Melt Growth Composites (MGCs). The binary MGCs (Al2O3/YAG and Al2O3/GAP binary systems) have a novel microstructure, in which continuous networks of single-crystal Al2O3 phases and single-crystal oxide compounds (YAG or GAP) interpenetrate without grain boundaries. To characterize the entangled structure of the typical MGCs, the X-ray computerized tomography (micro X-ray CT) was performed at a synchrotron radiation facility Spring8. The micro X-ray CT showed that the Al2O3 and the GAP are entangled with each other. Therefore, the MGCs have excellent high-temperature strength characteristics, creep resistance, superior oxidation resistance and thermal stability in the air atmosphere at very high temperatures. To achieve higher thermal efficiency for gas turbine systems, MGC bowed stacking nozzle vanes have been fabricated on an experimental basis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.