Abstract

Chemically modified cytochrome c with poly(ethylene glycol) (PEG) showed activity at temperatures higher than 100 degrees C and to be highly thermostable. The molecular size of PEG moieties and the coupling site affected the thermal stabilization. An optimal PEG/protein mass ratio of 2.8 was found, producing a fully thermostable biocatalyst at 80 degrees C. Site-directed mutagenesis on yeast cytochrome c showed an increased thermostabilization when lysine 79 residue, localized at the edge of the active site, was replaced by a nonreactive residue. Tertiary, secondary, and active-site structures were analyzed by fluorescence, CD, and UV/visible spectroscopies. Besides its disordered structure, the pegylated protein showed a lower unfolding rate at the active-site than the unmodified ones. A shell-like structure seems to protect the heme environment, in which PEG is coiled on the protein surface with a primary shield of rigid water molecules solvating the hydrophilic region of bound-PEG, and the PEG hydrophobic regions interacting with the hydrophobic clusters on protein surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.