Abstract
Tempranillo is a grapevine (Vitis vinifera L.) variety extensively used for world wine production which is expected to be affected by environmental parameters modified by ongoing global climate changes, i.e., increases in average air temperature and rise of atmospheric CO2 levels. Apart from determining their effects on grape development and biochemical characteristics, this paper considers the intravarietal diversity of the cultivar Tempranillo as a tool to develop future adaptive strategies to face the impact of climate change on grapevine. Fruit-bearing cuttings of five clones (RJ43, CL306, T3, VN31, and 1084) were grown in temperature gradient greenhouses (TGGs), from fruit set to maturity, under two temperature regimes (ambient temperature vs. ambient temperature plus 4°C) and two CO2 levels (ambient, ca. 400 ppm, vs. elevated, 700 ppm). Treatments were applied separately or in combination. The analyses carried out included berry phenological development, the evolution in the concentration of must compounds (organic acids, sugars, and amino acids), and total skin anthocyanins. Elevated temperature hastened berry ripening, sugar accumulation, and malic acid breakdown, especially when combined with high CO2. Climate change conditions reduced the amino acid content 2 weeks after mid-veraison and seemed to delay amino acidic maturity. Elevated CO2 reduced the decoupling effect of temperature on the anthocyanin to sugar ratio. The impact of these factors, taken individually or combined, was dependent on the clone analyzed, thus indicating certain intravarietal variability in the response of Tempranillo to these climate change-related factors.
Highlights
Grapevine is one of the most prominent crops in agriculture given the cultural and economic importance of grape and wine production
We have reported that Tempranillo clones differ in their response to elevated temperature in terms of sugar and anthocyanin accumulation (Arrizabalaga et al, 2018)
Tempranillo were obtained from the germplasm bank of three institutions: RJ43, CL306, and T3 were obtained from Estación de Viticultura y Enología de Navarra (EVENA), located in Olite, Navarra (Spain); 1084 was obtained from the Institute of Sciences of Vine and Wine, located in “La Grajera,” La Rioja (Spain); and VN31 was facilitated by Vitis Navarra, located in Larraga, Navarra (Spain)
Summary
Grapevine is one of the most prominent crops in agriculture given the cultural and economic importance of grape and wine production. Among the grape varieties cultivated worldwide, Tempranillo ranked #3 in 2017 with 231,000 ha, behind Cabernet Sauvignon and Kyoho (OIV, 2017), and it is one of the most important red grape varieties grown in Spain. This cultivar is characterized by subtle aroma, producing wines with fruity and spicy flavors, low acidity, and low tannins. Changes in grapevine growing conditions that affect berry composition are likely to impact the wine produced. Among the factors that affect berry content at harvest, climate parameters, and notably temperature, play a prominent role
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.