Abstract

Abstract The hexagonal high-temperature form of LiBH4 is known as a fast ion conductor. Here, we investigated its suitability as a solid electrolyte in high-temperature all-solid-state cells when combined with the following active materials: Li metal, graphite, lithium titanium oxide (Li4Ti5O12, LTO), and nanocrystalline rutile (TiO2). First results using lithium anodes and rutile nanorods as cathode material show that a cell constructed by simple cold-pressing operates at reversible discharge capacities in the order of 125 mA h g−1 at a C-rate of C/5 and at temperatures as high as 393 K. Besides TiO2, the compatibility of the LiBH4 with other active materials such as graphite and LTO was tested. We found evidence of possible interface instabilities that manifest through rare, yet still detrimental, self-charge processes that may be relevant for hydrogen storage applications. Moreover, we investigated the long-term cycling behavior of the cells assembled and demonstrate the successful employment of LiBH4 as an easily processable model solid electrolyte in practical test cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.