Abstract
Expansion of the superlattice of boron layers, with AB2 structure, due to different intercalated A atoms has been studied to understand the emergence of high Tc superconductivity in the diborides. The structure of these metal heterostructures at the atomic limit (MEHALs) (with A = Al, Mg, Ti, Hf, Zr) has been measured by synchrotron x-ray diffraction. The increasing atomic radius of the intercalated A ions induces an increase of (1) the separation between the boron layers and (2) the tensile micro-strain ε of the B–B distance within the boron layers. The results show that the superconductivity in these MEHALs appears in a critical region in a phase diagram controlled by two variables, the micro-strain and the charge density (ε, ρ).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.