Abstract

Emergent phenomena in exfoliated layered transition metal compounds have attracted much attention in the past several years. Especially, pursuing a ferromagnetic insulator is one of the exciting goals for stimulating a high-performance magnetoelectrical device. Here, we report the transition from a metallic to high-Tc semiconductor-like ferromagnet in thinned Fe3GaTe2, accompanied with competition among various magnetic interactions. As evidenced by critical exponents, Fe3GaTe2 is the first layered ferromagnet described by a 3D Ising model coupled with long-range interactions. An extra magnetic phase from competition between ferromagnetism and antiferromagnetism emerges at a low field below Tc. Upon reducing thickness, the Curie temperature (Tc) monotonically decreases from 342 K for bulk to 200 K for 1-3 nm flakes, which is the highest Tc reported as far as we know. Furthermore, a semiconductor-like behavior has been observed in such 1-3 nm flakes. Our results highlight the importance of Fe3GaTe2 in searching for ferromagnetic insulators, which may benefit spintronic device fabrication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call