Abstract

BackgroundHIV-1 subtype C (HIV-1C) accounts for almost 50% of all HIV-1 infections worldwide and predominates in countries with the highest case-loads globally. Functional studies suggest that HIV-1C is unique in its biological properties, and there are contradicting reports about its replicative characteristics. The present study was conducted to evaluate whether the host cytokine environment modulates the in vitro replication capacity of HIV-1C viruses.MethodsA small subset of HIV-1C isolates showing efficient replication in peripheral blood mononuclear cells (PBMC) is described, and the association of in vitro replication capacity with disease progression markers and the host cytokine response was evaluated. Viruses were isolated from patient samples, and the corresponding in vitro growth kinetics were determined by monitoring for p24 production. Genotype, phenotype and co-receptor usage were determined for all isolates, while clinical category, CD4 cell counts and viral loads were recorded for all patients. Plasmatic concentrations of cytokines and, acute-phase response, and microbial translocation markers were determined; and the effect of cytokine treatment on in vitro replication rates was also measured.ResultsWe identified a small number of viral isolates showing high in vitro replication capacity in healthy-donor PBMC. HIV-1C usage of CXCR4 co-receptor was rare; therefore, it did not account for the differences in replication potential observed. There was also no correlation between the in vitro replication capacity of HIV-1C isolates and patients' disease status. Efficient virus growth was significantly associated with low interleukin-10 (IL-10), interleukin-22 (IL-22), and C-reactive protein (CRP) levels in plasma (p < .0001). In vitro, pretreatment of virus cultures with IL-10 and CRP resulted in a significant reduction of virus production, whereas IL-22, which lacks action on immune cells appears to mediate its anti-HIV effect through interaction with both IL-10 and CRP, and its own protective effect on mucosal membranes.ConclusionsThese results indicate that high systemic levels of IL-10, CRP and IL-22 in HIV-1C-infected Indian patients are associated with low viral replication in vitro, and that the former two have direct inhibitory effects whereas the latter acts through downstream mechanisms that remain uncertain.

Highlights

  • HIV-1 subtype C (HIV-1C) accounts for almost 50% of all HIV-1 infections worldwide and predominates in countries with the highest case-loads globally

  • Systemic IL-22 levels correlated positively with C-reactive protein (CRP) and IL-10, and negatively with plasmatic lipopolysaccharide (LPS), an indicator of microbial translocation from the gut; this suggests IL-22 mediates its anti-HIV effects indirectly through interactions with IL-10 and CRP, and through its protective effect on epithelial function. These results indicate that a complex host environment characterized by an IL-10 dominant immunosuppressive profile that reduces immune activation, in concert with a subclinical inflammatory response of peripheral tissues mediated by IL-22 and CRP, appears to contribute to the observed low replication capacity of HIV-1C viruses in peripheral blood mononuclear cells (PBMC)

  • In summary, the present study supports the hypothesis that high systemic levels of IL-10, IL-22 and CRP in HIV-1C-infected Indian patients correlate with a reduced replication in vitro

Read more

Summary

Introduction

HIV-1 subtype C (HIV-1C) accounts for almost 50% of all HIV-1 infections worldwide and predominates in countries with the highest case-loads globally. Functional studies suggest that HIV-1C is unique in its biological properties, and there are contradicting reports about its replicative characteristics. HIV-1 subtype C is the most prevalent HIV-1 subtype worldwide, accounting for more than 50% of HIV-1 infections worldwide in 2004 [1] It predominates in countries with 80% of all global HIV-1 infections (subSaharan Africa, India) and is rapidly increasing in China and Latin America [2,3,4,5]. HIV-1C is unique in maintaining its predominant CCR5 tropism throughout infection, which may affect its transmission and pathogenesis [10,11], and there are some contradicting reports about its replicative properties [12,13]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call