Abstract
Photoinhibition of photosynthesis was studied in young (but almost fully expanded) and mature canopy sun leaves of several tropical forest tree species, both under controlled conditions (exposure of detached leaves to about 1.8 mmol photons·m-2·s-1) and in the field. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence emission (FV/FM) and also by gas-exchange measurements. For investigations in situ, young and mature leaves with similar exposure to sunlight were compared. The results show a consistently higher degree of photoinhibition in the young leaves. In low light, fast recovery was observed in both types of leaves in situ, as well as in the laboratory. The fluorescence parameter 1 — FS/F′M (where FS = stationary fluorescence and f′M = maximum fluorescence during illumination) was followed in situ during the course of the day in order to test its suitability as a measure of the photosynthetic yield of photosystem II (PSII). Electron-transport rates were calculated from these fluorescence signals and compared with rates of net CO2 assimilation. Measurements of diurnal changes in PSII ‘yield’ confirmed the increased susceptibility of young leaves to photoinhibition. Calculated electron transport qualitatively reflected net CO2 uptake in situ during the course of the day. Photosynthetic pigments were analyzed in darkened and illuminated leaves. Young and mature leaves showed the same Chl a/b ratio, but young leaves contained about 50% less Chl a + b per unit leaf area. The capacity of photosynthetic O2 evolution per unit leaf area was decreased to a similar extent in young leaves. On a Chl basis, young leaves contained more α-carotene, more xanthophyll cycle pigments and, under strong illumination, more zeaxanthin than mature leaves. The high degree of reversible photoinhibition observed in these young sun leaves probably represents a dynamic regulatory process protecting the photosynthetic apparatus from severe damage by excess light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.