Abstract
Oligonucleotide (11-mer) molecules are immobilized on silicon in high surface population using either a permanent thioether bond or a chemo-selectively reversible disulfide bond to the surface thiol functionality. Substrate hydroxy groups are first silanized with an 11 carbon trichlorosilane containing a terminal, protected thiol moiety. Oligonucleotide modified with a tether possessing a terminal thiol group is further derivatized with a water-soluble, halobenzylic bifunctional reagent, which allows the complete conjugate to be attached to the surface through a permanent thioether bond. Alternatively, the oligonucleotide-tether complex can be combined with a pyridyldisulfide compound, which, in turn, facilitates the formation of a reversible disulfide bond with surface thiol. The amount of immobilized oligonucleotide was determined by radiochemical labeling with 32P. Additional verification of surface amounts was obtained from X-ray photoelectron spectroscopic analysis of substrates. The results of the immobilization protocols are compared with the oligonucleotide surface population achieved through the conventional silanizing agent, mercaptopropyltrimethoxysilane. Finally, a preliminary confirmation of duplex formation of a TTU-attached 25-mer with its complementary strand is outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.