Abstract
SnO2 -Ta2 O5 nanocomposite was synthesized by a facile coprecipitation method and further calcined to obtain crystalline powder. Phase formation, morphology, bandgap and photocatalytic properties were analyzed using powder X-ray diffraction, scanning electron microscopy, UV-Vis diffused reflectance spectroscopy, BET surface area and Raman spectroscopy, respectively. Effect of calcination temperature on the crystallinity of the composite was studied. The as-prepared samples of SnO2 , Ta2 O5 and SnO2 -10wt%Ta2 O5 composite as well as the calcined composite sample were tested for photocatalytic activity for methylene blue dye degradation under visible light. Photocatalytic studies reveal that the as-prepared SnO2 -10wt%Ta2 O5 composite showed the best photocatalytic activity for the degradation of methylene blue (MB) by harvesting visible-light radiation efficiently. Further mineralization of methylene blue, estimated by COD analysis, is found to have degraded with an efficiency of 91.6%. The study demonstrates that heterostructure of SnO2 -Ta2 O5 nanocomposite could be applied in photocatalytic purification of organic pollutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.