Abstract

High surface area (ca. 1700–3400m2g−1) activated carbons (ACs) were prepared from Chinese anthracite by chemical activation with KOH using KOH/Anthracite weight ratios (WKOH/WAnthracite) ranging from 1.6 to 5. The photocatalytic degradation of methylene blue (MB) at high concentration conditions up to 25ppm under UV–vis irradiation was performed on AC and on TiO2-AC mixtures prepared by slurry methodology. The highest values of both BET surface area and of micropore volume to total pore volume ratio were found with a WKOH/WAnthracite ratio of 4. It was found that ACs developed photocatalytic activity and an important synergistic effect with TiO2. TiO2-AC mixtures showed enhancements in the photocatalytic activity up to 6 times higher than commercial TiO2. The photocatalytic activity of ACs and binary materials was discussed with respect to textural properties and surface functional groups of carbons. The ratio of micropore volume to total pore volume and the surface pH of the ACs play important roles upon the photocatalytic activity of TiO2-AC, and the combination of adsorption followed by photodegradation clearly contributed to the treatment of highly concentrated methylene blue. It was concluded that photochemical reactive microporous ACs have a beneficial influence upon the photocatalytic activity of TiO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.