Abstract

The rational design and development of highly-active photocatalytic materials for the degradation of dangerous chemical compounds, such as parabens, is one of the main research pillars in the field of photocatalysis. Graphitic carbon nitride (g-C3N4) is a 2D non-metal material and is considered one of the most promising photocatalysts, because of its peculiar physicochemical properties. In this work, porous g-C3N4 nanosheets (CNNs) were successfully prepared via thermal exfoliation of bulk g-C3N4 (CNB). A thorough physicochemical characterization analysis before and after the exfoliation process was performed, revealing the improved textural characteristics (surface area of 212 m2/g), chemical stability, and optical properties (wide band gap of 2.91 eV) of CNNs compared to the CNB. Then, both CNB and CNNs were comparatively assessed as photocatalysts for the degradation of methyl-, ethyl- and propylparaben (MP, EP, and PP), as well as of their mixture. CNNs with high surface area display superior photocatalytic performance under solar irradiation, offering > 95% degradation efficiency to all parabens, in contrast to the much inferior performance of CNB (< 30%). Several experimental parameters, involving catalyst concentration, initial concentration of parabens, and irradiation type were thoroughly investigated for the degradation of MP over CNNs. Moreover, various scavengers were employed to discriminate the role of different reactive species, revealing that superoxide anion radicals (·O2–) play a pivotal role in the degradation process, in contrast to hydroxyl radicals (·OH). The present results pave the way towards the facile synthesis of high surface area CNNs with improved textural and electronic characteristics, which can be applied in various environmental applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.