Abstract

Reaction of hydrated hydrazinium fluorochromate(III), [N2H6][CrF5]·H2O, with fluorine (F2) in anhydrous hydrogen fluoride (aHF) medium at room temperature yields completely amorphous CrF3-based materials with exceptionally high specific surface areas of 180–420 m2 g−1 (HS-CrF3). The stepwise reaction starts with the oxidative decomposition of the cationic part of the precursor with F2 that gives a CrF3 intermediate with low surface area. In the following step, part of Cr3+ is oxidized to Cr>3+, and in the presence of residual H2O/[H3O]+ species Cr>3+ fluoride oxides are formed. Formation of volatile chromium compounds, mainly CrO2F2, is apparently the key step in HS-CrF3 formation. Removal of these components from the final product reduces the oxygen content, and generates microporosity. The HS-CrF3 materials are completely amorphous with a bulk composition that is close to stoichiometric CrF3. Small amounts of Cr>3+ and oxygen in the final product very likely originate from the retained non-volatile CrOF3. The HS-CrF3 materials are Lewis acids and exhibit a high reactivity towards chlorofluorocarbons (CFCs) evidenced by substantial F/Cl exchange between CFCs and the solid fluoride. High reactivity of these new materials can be ascribed to their nanoscopic nature, exceptionally high surface area, and low levels of impurities. As such, they represent an interesting new class of benchmark fluoride materials applicable in fluorocarbon chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.