Abstract

Hollow-structured α-Fe2O3/carbon (HIOC) nanocomposite with a high surface area of around 260 m2 g−1 was synthesized by a one-step, in situ, and industrially-oriented spray pyrolysis method using iron lactate and sucrose solution as the precursors. The small α-Fe2O3 nanocrystals were highly dispersed inside amorphous carbon to form a carbon nanocomposite. Electrochemical measurements showed that the carbon played an important role in affecting both the cycle life and the rate capability of the electrode. The HIOC composites showed the best electrochemical performance in terms of high capacity (1210 mAh g−1 at a current density of 0.1 C), enhanced rate capability and excellent cycle stability (720 mAh g−1 at a current density of 2 C up to 220 cycles). HIOC nanocomposite can also be used in other potential applications, such as in gas sensors, catalysts, and biomedical applications because it is easily dispersed in water and has a high surface area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.