Abstract

Nitrogen (N) fertilisation is critical for sugarcane crop production. Consequently, overuse of N fertiliser in sugarcane is widespread and it is most prevalent in China. Yet, a comprehensive analysis of sugarcane N balance accounting for different reactive N (Nr) loss pathways, crop N use and soil N retention using 15N labelled fertilisers under commercial high-input cropping conditions is lacking. A two-year field experiment with 5 N levels (0–560 kg N ha−1; N0, N210, N300, N390, N560) was conducted to quantify the effect of N rate on sugarcane yield, Nr loss through different loss pathways, crop N use and soil N retention, and to identify an optimal N rate that sustain high yield whilst reducing Nr loss in Southern China. The results showed that optimal N rate (N300) had similar yield compared with farmer practice (N560) for the plant crop and the ratoon crop. Nitrogen leaching and ammonia loss were increased significantly with increase in N rate, with farmer practice recording the highest Nr loss. Compared with farmer practice, under optimal N application, N leaching was reduced from 211 kg ha−1 to 107 kg ha−1 and from 244 kg ha−1 to 165 kg ha−1 for the plant and ratoon crops, respectively. The ammonia volatilization from the plant crop and the ratoon crop in the optimal N treatment was 24.8 kg ha−1 and 27.0 kg ha−1, respectively, which are considerably less compared with the emission from the farmer practice. There was no significant difference in nitrous oxide emission between optimal N rate and farmer practice. 15N labelling studies showed that crop N recovery, soil N residue and fertiliser N lost at the optimal N rate were 20.9%, 24.9% and 54.2%, respectively, as opposed to 12.5%, 14.8% and 72.7%. respectively, under farmer practice. To the best of our knowledge, this study forms the first comprehensive evaluation of sugarcane N balance accounting Nr loss, N use and native N soil stock covering a wide range of N supply simultaneously in the plant and ratoon crops under commercial crop production condition. This study thus provides very valuable new knowledge not only for crop N supply optimisation in high-input sugarcane production systems as in China but also for sugarcane greenhouse gas accounting studies particularly from climate change mitigation and bioenergy production context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.