Abstract
Elevated sugar consumption is associated with an increased risk for metabolic diseases. Whereas evidence from humans, rodents, and insects suggests that dietary sucrose modifies sweet taste sensation, understanding of peripheral nerve or taste bud alterations is sparse. To address this, male rats were given access to 30% liquid sucrose for 4weeks (sucrose rats). Neurophysiological responses of the chorda tympani (CT) nerve to lingual stimulation with sugars, other taste qualities, touch, and cold were then compared with controls (access to water only). Morphological and immunohistochemical analyses of fungiform papillae and taste buds were also conducted. Sucrose rats had substantially decreased CT responses to 0.15-2.0M sucrose compared with controls. In contrast, effects were not observed for glucose, fructose, maltose, Na saccharin, NaCl, organic acid, or umami, touch, or cold stimuli. Whereas taste bud number, size, and innervation volume were unaffected, the number of PLCβ2+ taste bud cells in the fungiform papilla was reduced in sucrose rats. Notably, the replacement of sucrose with water resulted in a complete recovery of all phenotypes over 4weeks. The work reveals the selective and modality-specific effects of sucrose consumption on peripheral taste nerve responses and taste bud cells, with implications for nutrition and metabolic disease risk. VIDEO ABSTRACT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.