Abstract

Cryptosporidium canis is a zoonotic species causing cryptosporidiosis in humans in addition to its natural hosts dogs and other fur animals. To understand the genetic basis for host adaptation, we sequenced the genomes of C. canis from dogs, minks, and foxes and conducted a comparative genomics analysis. While the genomes of C. canis have similar gene contents and organisations, they (~41.0 %) and C. felis (39.6 %) have GC content much higher than other Cryptosporidium spp. (24.3-32.9 %) sequenced to date. The high GC content is mostly restricted to subtelomeric regions of the eight chromosomes. Most of these GC-balanced genes encode Cryptosporidium-specific proteins that have intrinsically disordered regions and are involved in host-parasite interactions. Natural selection appears to play a more important role in the evolution of codon usage in GC-balanced C. canis, and most of the GC-balanced genes have undergone positive selection. While the identity in whole genome sequences between the mink- and dog-derived isolates is 99.9 % (9365 SNVs), it is only 96.0 % (362 894 SNVs) between them and the fox-derived isolate. In agreement with this, the fox-derived isolate possesses more subtelomeric genes encoding invasion-related protein families. Therefore, the change in subtelomeric GC content appears to be responsible for the more GC-balanced C. canis genomes, and the fox-derived isolate could represent a new Cryptosporidium species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.