Abstract
A circular cylinder was tested in the cross-flow of an organic vapor (Novec™ 649) and of air over the subsonic (M < 0.4) and high subsonic (0.4 < M < 0.8) speed range in a continuously running pressurized closed-loop wind tunnel test facility. Time-averaged pressure measurements gave information on surface pressure distributions, and the corresponding drag and base pressure drag coefficients were obtained. Due to the charging of the wind tunnel, different values of the compressibility factor (0.876 < Z < 0.999) could be achieved for the organic vapor flow. This enabled in combination with the results for air an assessment of the impact of non-ideal gas dynamics on the form drag of a cylinder in the considered highly subsonic flow regime. The new experimental data were compared with available literature results. Changes in surface pressure distribution at higher subsonic velocities were identified and discussed. It was found that non-ideal gas effects did not strongly affect the overall drag. The variation of drag coefficient over the Mach number range was comparable with literature data for ideal-gas compressible flow, including shock-less and intermittent shock wave, and permanent shock wave flows regimes. At Mach 0.4, the flow of Novec™ 649 was in the shock-less regime and exhibited a pronounced dependency on the Reynolds number. An increase in drag was observed at Mach 0.6 which was attributed to the commencement of vortex shedding. Non-ideal thermodynamics only affected the flow locally and a reduction of the critical pressure coefficient in the high subsonic flow regime was observed in the surface pressure distribution. However, this mechanism did not alter significantly the overall drag behavior.Graphic abstractDrag coefficient CD against Re for several Mach numbers M and comparison with available literature results obtained for air (colored symbols indicate different Mach number clusters)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.