Abstract

Chemicals possessing persistence (P) and high mobility (M) can present a hazard to drinking water resources by traversing natural barriers like riverbanks and artificial barriers found in water treatment plants. If the chemical is also toxic (T), i.e. classifiable as a PMT, the agent might be of particular concern as a potential drinking water contaminant. During routine water sampling, detection and quantitation of polar substances with high mobility can be problematic. The German Environment Agency (UBA) is considering the use of the Log Koc value as a proxy for mobility (M). Log Koc is related to Log P by the equation Log Koc = 0.69 Log P + 0.22. In this study, we demonstrate that chemicals with log P values at or very close to 2.0, 3.0 or 4.0 (and their concomitant log Koc values) can vary significantly in their chemical structures, molecular weights, molar volumes, and calculated molar refractivity (CMR), which is related to the mean polarizability of a molecule. The large degree of potential diversity in chemical structure and molecular parameters related to chemical behavior at a particular log P or log Koc value suggests that log Koc might not contain enough information to function as a standalone surrogate for the mobility (M) of a chemical, i.e. as related to its ability to move from a drinking water resource through the water plant purification process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.