Abstract
Introduction of highly crosslinked polyethylene has increased interest in large femoral heads, because thin acetabular liners can be used while maintaining low wear rates and larger heads decrease the incidence of instability. However, crosslinking and subsequent thermal treatments can cause decreased mechanical properties that might obviate the reduced wear under extreme conditions. To examine whether increased contact pressures would adversely affect wear in thin liners, we tested thin and thick highly crosslinked liners (3.8 mm thickness/44-mm head and 7.9 mm thickness/36-mm head, respectively) to 5 million cycles on a hip simulator under near impingement conditions. Conventional polyethylene liners (7.9 mm thickness/36-mm head) served as controls. Large femoral heads with highly crosslinked polyethylene liners as thin as 3.8 mm in thickness do not wear at a higher rate than a thicker liner of the same material, even when subjected to large contact pressures such as occur under near-impingement conditions. Crosslinked polyethylene may allow for liners that are thinner than has been traditionally accepted. This conclusion, however, is based solely on wear test results with idealized cup position, no intentional edge loading, no head subluxation, and no artificial aging. Continued monitoring will be necessary to elucidate the clinical efficacy of these devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.