Abstract

ABSTRACTThe mechanical properties of stretched poly(vinyl alcohol) (PVA), which is formed by stretching a film prepared from a freeze/thaw cycled gel, were investigated as a function of the stretching ratio. The tensile strength and Young's modulus of 800% stretched PVA annealed at 130°C were 3.4 and 119 GPa, respectively. These values were much higher than those for a PVA film prepared without freeze/thaw cycling. For a film stretched more than 600% before annealing, two melting peaks, assignable to folded and extended chain crystals, were observed around 220°C and 230°C, respectively. This indicates that a shish‐kebab structure is formed as the stretching ratio increases. After annealing at 130°C, the folded‐chain crystal transformed to an extended‐chain crystal if an extended‐chain crystal was present in the stretched film before annealing. High tensile strength and Young's modulus after annealing were due to the formation of extended‐chain crystal. Therefore, the presence of extended‐chain crystal for annealing is important to provide good mechanical properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41318.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call