Abstract

Hydrogels capable of transforming in response to a magnetic field hold great promise for applications in soft actuators and biomedical robots. However, achieving high mechanical strength and good manufacturability in magnetic hydrogels remains challenging. Here, inspired by natural load-bearing soft tissues, a class of composite magnetic hydrogels is developed with tissue-mimetic mechanical properties and photothermal welding/healing capability. In these hydrogels, a hybrid network involving aramid nanofibers, Fe3O4 nanoparticles, and poly(vinyl alcohol) is accomplished by a stepwise assembly of the functional components. The engineered interactions between nanoscale constituents enable facile materials processing and confer a combination of excellent mechanical properties, magnetism, water content, and porosity. Furthermore, the photothermal property of Fe3O4 nanoparticles organized around the nanofiber network allows near-infrared welding of the hydrogels, providing a versatile means to fabricate heterogeneous structures with custom designs. Complex modes of magnetic actuation are made possible with the manufactured heterogeneous hydrogel structures, suggesting opportunities for further applications in implantable soft robots, drug delivery systems, human-machine interactions, and other technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call