Abstract

Age-hardening behavior of a new generation of FeCo alloys [Fe–40Co–5V–0.005B–0.015C–0.5Mo–0.5Nb (at.%)] is characterized by microhardness, tensile testing, electrical resistivity, and magnetic properties. The alloy exhibits maximum hardening when aged at 600 °C. Precipitation of γ2(V-rich face-centered cubic phase) during aging appears to be responsible for the observed hardening behavior. The alloy exhibits superior creep resistance when subjected to solutionizing in γ phase field and aged at 600 °C. On the other hand, the room temperature tensile ductility of the aged alloy depends on the grain size, which in turn can be controlled by varying the solutionizing condition. The age-hardened alloy exhibits a room temperature electrical resistivity of 70–75 μΩ cm. The higher resistivity of the present alloy as opposed to the commercial FeCo–2V alloys is attributed to the high V content of the alloy. Structure-sensitive magnetic properties like coercivity and core losses of the alloy are affected by the aging treatment, and the maximum coercivity is observed when the alloy is aged at 600 °C. High coercivity of the alloy is attributed to the fine distribution of paramagnetic γ2precipitate, fine grain size, and internal stress arising from phase transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.