Abstract

A strategy for the synthesis of new cross-linkable bimodal amphiphilic grafts (bAPGs) was developed. These grafts are of hydrophilic PDMAAm backbones carrying low (Mn ∼ 17 200 g/mol) and high (Mn ∼ 117 000 g/mol) molecular weight hydrophobic PDMS branches, each branch carrying a vinylsilyl end-group. The bAPGs were cross-linked by Karstedt catalyst to bimodal amphiphilic conetworks (bAPCNs) by the use of polyhydrosiloxane-co-PDMS as the cross-linker. Membranes prepared from bAPCNs exhibit mechanical properties surprisingly superior to earlier APCNs prepared with APGs with monomodal low molecular weight branches. Membrane bimodality controls surface morphology and topography by means of elastic wrinkling instability during film formation. Semipermeable bAPCN membranes with precisely controlled nanochannel dimensions were prepared so as to allow rapid insulin diffusion and prevent passage of IgG. bAPCN membranes were designed for immunoprotection of live pancreatic islets and are thus key components for a b...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.