Abstract

AbstractChitosan (CS) has biocompatibility and biodegradability, but the bulk CS hydrogel/membranes with its poor strength and limited antibacterial property could not satisfy the practical application. Here green dissolving/regeneration and in situ reduction strategy was combined to construct high strength antibacterial CS membranes. First nanofibrous CS hydrogels were constructed through dissolving CS in LiOH/KOH/urea aqueous system via freezing–thawing process followed regeneration. Then, Ag NPs were immobilized along CS nanofibers through in situ reductions of Ag + by the NH2 group of CS. The obtained NCM‐Ag composite dry membranes are easy for storing and can quick switch to nanofibrous hydrogels as absorbing water. Size of Ag NPs can be controlled to very small until 2 nm by concentration and limited space network. Fourier transform infrared spectroscopy and X‐ray photoelectron spectrometer indicated the forceful grasp ability of CS nanofibers to Ag NPs for a stable binding, mechanical property was enhanced over 100Mpa as the nanofibrous structure and chain linked by Ag coordination. The NCM‐Ag membranes had excellent antibacterial activities against both Staphylococcus aureus and Escherichia coli. Moreover, such nanofibrous CS membrane exhibited good adhesive ability to tissues. Combining all these properties, NCM‐Ag membranes would be potential as antibacterial adhesion barrier to accelerate wound healing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call