Abstract

This paper examines the behavior at high strain rates of a shear-thickening fluid (STF) impregnated glass fiber-reinforced polymer (GFRP) fabric using a split Hopkinson pressure bar (SHPB). This study involved impact testing of 4 GFRP specimens and 20 GFRP-STF composite specimens at four different strain rates. The STF employed in this study was synthesized by incorporating 20.0 wt.% of 12 nm silica in polyethylene glycol. Rheological tests indicated that the STF exhibited a noticeable shear-thickening effect, with viscosity surging from 3.0 Pa·s to 79.9 Pa·s. The GFRP-STF specimen demonstrated greater energy absorption capacity, deformation ability, and toughness, bearing higher and faster impact loads than neat GFRP. Specifically, the GFRP-STF specimen showed a 21.8% increase in peak stress and a 92.9% rise in energy absorption capacity under high-strain-rate loading. Notably, the stress–strain curve of the GFRP-STF specimen exhibited a distinct yield stage, while the energy absorption curve displayed no significant descending stage features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.