Abstract

In this paper, loading and loading-unloading tests of carbon fiber reinforced aluminum laminates (CRALL) have been carried out in a tensile impact apparatus, and quasi-static tensile tests have been performed on a MTS-810 machine. Complete stress-strain curves of composite in the strain rate range from 0.001–1200 1/s have been obtained. Experimental results show that CRALL composite is a strain rate sensitivity material, the tensile strength and failure strain both increased with increasing strain rate. A linear strain hardening model has been combined with Weibull distribution function to establish a constitutive equation for CRALL. The simulated stress-strain curves from model are in good agreement with the test data. The analysis of the model shows that the Weibull scale parameter, σ0, increased with increasing strain rate, but Weibull shape parameter, β, can be regarded as a constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call