Abstract

To explore new approaches to severe plastic deformation and the ductility of a multicomponent magnesium-lithium alloy, an ultralight microduplex Mg-9.55Li-2.92Al-0.027Y-0.026Mn alloy was made by novel multidirectional forging and asymmetrical rolling, and the superplasticity behavior was investigated by optical microscope, hot tensile test, and modeling. The average grain size is 1.9 μm in this alloy after multidirectional forging and asymmetrical rolling. Remarkable grain refinement caused by such a forming, which turns the as-cast grain size of 144.68 μm into the as-rolled grain size of 1.9 μm, is achieved. The elongation to failure of 228.05% is obtained at 523 K and 1 × 10-2 s-1, which demonstrates the high strain rate quasi-superplasticity. The maximum elongation to failure of 287.12% was achieved in this alloy at 573 K and 5 × 10-4 s-1. It was found that strain-induced grain coarsening at 523 K is much weaker than the strain-induced grain coarsening at 573 K. Thus, the ductility of 228.05% is suitable for application in high strain rate superplastic forming. The stress exponent of 3 and the average activation energy for deformation of 50.06 kJ/mol indicate that the rate-controlling deformation mechanism is dislocation-glide controlled by pipe diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.