Abstract

Novel bio-based composite wood panels (CWPs) that consisted of distiller’s dried grains and solubles (DDGS) flour adhesive bound to a wood filler/reinforcement were subjected to high strain-rate compression loading, and their behavior was investigated. Specimens of DDGS-Paulownia wood (PW) or DDGS-pinewood (Pine) composites made using DDGS with fractions of 10%, 15%, 25%, and 50% were tested at high strain-rates using a modified compression Split Hopkinson Pressure Bar (SHPB). Both DDGS-PW and DDGS-Pine composites displayed strain-rate sensitivity, and DDGS-PW had a 25% fraction, which showed the highest ultimate compressive strength of 655 MPa at approximately 1600/s. The 90%-PW had the highest specific energy of 19.24 kJ/kg at approximately 1600/s when loaded via dynamic compression. The CWPs constructed of DDGS-PW had higher strength and energy absorption than DDGS-Pine with the exception of the 50% DDGS composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.