Abstract

This paper presents an experimental study on the high strain rate compressive behavior of micro-fibre reinforced ultrahigh performance cementitious composite, which is intended to be used as a matrix for slurry infiltrated fibre concrete (SIFCON). Cementitious composite specimens with 5 different types of microfibres, namely aramid, carbon, wollastonite, polypropylene and glass in amounts of 1.5-2.0% by volume were prepared and investigated. Split Hopkinson pressure bar (SHPB) equipment was used to determine the cementitious composite behavior at strain rates up to 1600 s-1. Quasistatic tests were performed, as well and ratios of these properties at high strain rates to their counterparts at static loading were compared. The dynamic increase factors were calculated. Strain rate sensitivity was observed - compressive strength was found to be increased with strain rate for all tested specimens. Peak stress values, critical compressive strain and post peak behaviour varies for specimens with different micro-fibre reinforcement, which allows to find the optimal reinforcement for high strain rate impacted structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call