Abstract
Martensitic polycrystalline Ni48.8Mn31.4Ga19.8 Heusler alloys, with a stacking period of 14 atomic planes at room temperature, were innovatively processed by combining high-energy ball milling and powder metallurgy. Bulk samples were mechanically coupled to a piezoelectric material in a parallel configuration, and the mechanical deformation of the studied system due to the twin's variant motion was investigated under overlapped static and oscillating magnetic fields. A reversible and high mechanical deformation is observed when the frequency of the oscillating magnetic field is tuned with the natural vibration frequency of this system. In this condition, a linear deformation as a function of the static magnetic field amplitude occurs in the ±4 kOe range, and a mechanical deformation of 2% at 10 kOe is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.