Abstract
Laboratory resonant column and cyclic triaxial tests are performed to determine the dynamic response (i.e. shear modulus and damping) of chemically grouted sand. The effect of chemical grouting is evaluated as a function of shearing-strain amplitude, confining stress, cycling prestrain, number of cycles, grout type, concentration, and curing time. The test results show that the shearing-strain amplitude, grout type and grout concentration have significant effects on the shear modulus and damping ratio of the test specimens. The increased addition of sodium silicate grout, which produces stiff gels, improved the shear modulus of the test sand. The acrylate (AC-400) and polyurethane (CG5610) grout, which produces flexible (rubber-like) gels, improved the damping capacity of the sand with increasing grout concentration. The addition of chemical grout greatly reduces the effect of cyclic prestraining over untreated sands. In the case of dense sands, the reduction of cyclic prestraining is less pronounced than in loose sands, which have a higher potential for particle movement and reorientation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.