Abstract

The stiffness and toughness of topology optimised structures containing lattices under three-point bending is studied. A porosity constraint is introduced to control the proportion of lattice generated while optimising the beams for minimum compliance. A novel tetrahedron element-based lattice with tapered trusses and a near-isotropic elastic response is developed to accurately map the relative densities from topology optimisation to a 3D printable structure. Topology optimised solid structures (0 % porosity), used for benchmarking, are found to have high stiffness but can be susceptible to buckling. At the other extreme, structures comprising entirely of lattice (100 % porosity) are shown to have low initial stiffness and low residual toughness. An experimental parametric study reveals that porosity can be tailored between these two bounds to achieve both high stiffness and high residual toughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.